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Abstract

Spatial heteroskedasticity may arise jointly with spatial autocorrelation in lattice data col-
lected from agricultural trials and environmental studies. This leads to spatial clustering not only
in the level but also in the variation of the data, the latter of which may be very important, for ex-
ample, in constructing prediction intervals. This article introduces a spatial stochastic volatility
(SSV) component into a widely used hierarchical spatial model of Besag, York, and Mollié (1991,
Annals of the Institute of Statistical Mathematics, 43, 1-20) to capture the spatial clustering in
heteroskedasticity. The SSV component is a mean zero, conditionally independent Gaussian pro-
cess given a latent spatial process of the variances. The logarithm of the latent variance process
is specified by an intrinsic Gaussian Markov random field. The SSV model relaxes the traditional
homeskedasticity assumption for spatial heterogeneity and brings greater flexibility to the pop-
ular spatial statistical models. The Bayesian method is used for inference. The full conditional
distribution of the heteroskedasticity components can be shown to be log-concave, which facili-
tates an adaptive rejection sampling algorithm. Application to the well-known wheat yield data
illustrates that incorporating spatial stochastic volatility may reveal the spatial heteroskedasticity

hidden from existing analyses.
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1. INTRODUCTION

Spatial heteroskedasticity may arise jointly with spatial autocorrelation in agricultural trials or en-
vironmental studies, where data are typically collected over a regular or irregular lattice. Spatial
autocorrelation implies local clustering in the level of the variable under observation and has been
studied extensively in the literature. Spatial heteroskedasticity occurs when the variability of the
spatial data is higher in one area than another. In contrast to the enormous literature on spatial
autocorrelation, the modeling of spatial heteroskedasticity is a much less developed field. For point
referenced data, Cowles and Zimmerman (2003) introduced spatial heteroskedasticity by allowing the
variance of the error process to differ across subregions. This method falls into the category of group-
wise heteroskedasticity. In the econometrics literature, Kelegian and Robinson (1998) suggested tests
for spatial heteroskedasticity, assuming that the variance can be modeled by a set of regressors. This
method seems unsatisfactory, as it requires a specification of the causes of the changing variance,
which may not be possible in general. With the usual assumption of spatial continuity, we expect
that the change in variance should occur smoothly over space. A preferable model should, there-
fore, allow the heteroskedasticity to exhibit a smoothly varying spatial structure, leading to local
clustering in the variability. This article, motivated by a further investigation in fitting well-known
wheat-yield data Mercer and Hall (1911), aims to propagate a model which allows joint modeling of
spatial autocorrelation and spatial heteroskedasticity within the Bayesian framework.

The wheat yield data of Mercer and Hall (1911) is perhaps the best analyzed lattice dataset in
the spatial statistics literature. The data were obtained from a uniformity trial, where all the plots
are treated with the same treatment. The data consists of wheat yield on a 20 x 25 lattice of plots
approximately one acre in total area. The 20 rows run in the east-west direction and the 25 columns
run in the north-south direction. The original object of the experiment was to determine the optimal

plot size which would reduce the error within working limits. Therefore, spatial variability is a direct



concern. It is important for such studies to model spatial variation to obtain efficient estimators of
the treatment effects.

In the non-Bayesian framework, the wheat yield data has witnessed many of the important con-
tributions to the development of the Gaussian Markov random field (GMRF) models, including the
simultaneous autoregression (SAR) (Whittle 1954) and the conditional autoregression (CAR) (Besag
1974, 1977). However, these GMRF models did not fit very well, due at least in part to the non-
stationarity in mean and covariance. There has been continuing effort to improve the unsatisfactory
fit. To remove the mean nonstationarity before fitting GMRF models, Cressie (1993) detrended the
data with median polishing, a robust method iteratively corrects the data by row and column medians
until a stop criterion is met. More recently, Dreesman and Tutz (2001) proposed a spatially varying
coefficient model with a locally smoothed pseudolikelihood estimator to handle mean nonstationarity
as well as covariance nonstationarity. They considered the spatially varying coefficient model as a
useful exploratory tool and found “new strong support for the suspicion that the wheat yield data
are not stationary” (Dreesman and Tutz 2001, p.13). Their findings shed lights on desired model
properties to improve the fit in a Bayesian framework.

Voluminous literature has been devoted to hierarchical Bayesian modeling and analysis for spatial
data. A widely used spatial areal model is given by Besag, York, and Mollié (1991). The model
assumes that the detrended small scale variation is composed of two terms: one capturing regional
clustering and the other representing unstructured regional heterogeneity. The unstructured regional
heterogeneity terms are assumed to be independent and identically distributed normal variables with
mean zero. For the wheat yield data, the findings in Dreesman and Tutz (2001) suggests that a
good model should address the covariance nonstationarity. When a model of Besag et al. (1991) is
fit to the detrended wheat yield data (see more details in Section 5), we find that the unstructured
regional heterogeneity terms may not have the same variance across the whole field. In particular,
the plot of the square of these terms in Figure 1 shows that variation is much higher in a small region

around the center of the field than in other regions, and the variation tends to be locally clustered.



The squared unstructured regional heterogeneity terms are found to be spatially correlated from an
exploration analysis using both the Moran and the Geary statistics; see more details in Section 5.
This implies that the regional heterogeneity may have local clustering in their variation, and may not
be completely “unstructured”. Therefore, one way to extend Besag et al. (1991)’s model is simple
to allow the regional heterogeneity terms to have spatially varying variance, as supported by the
exploring analysis.

In this article, we introduce a spatial stochastic volatility (SSV) component into the widely used
hierarchical spatial model of Besag et al. (1991) to capture the spatial clustering in heteroskedastic-
ity. The basic idea is adapted from the time series analog. The SSV component is a mean zero,
conditionally independent Gaussian process given a latent spatial process of the variances. To ensure
positivity of the variance and allow spatial clustering, we use a GRMF to model the logarithm of
the latent variance. This GMRF can be intrisinc as for the spatial clustering effect in Besag et al.
(1991). With the SSV component, the new spatial model provides a more intuitive alternative in
the Bayesian framework to the spatially varying coefficient model of Dreesman and Tutz (2001) by
providing posterior surfaces of the spatial heteroskedasticity as well as the spatial clustering effect.

The rest of the paper is organized as follows. In Section 2, we briefly review the traditional
model of Besag et al. (1991) and then discuss strategies to fix its limitation in handeling spatial
heteroskedasticity. The proposed SSV model is introduced in Section 3. Implementation details for
Bayesian computing are discussed in Section 4. In Section 5, the classic wheat yields data (Mercer and
Hall 1911) is reanalyzed using the SSV model and the results are compared to those obtained from
the traditional model Besag et al. (1991). The SSV model is found to pick up the spatial clustering
of heteroskedasticity hidden from the existing analysis. A summary and discussion of future research

directions conclude in Section 6.

2. BESAG, YORK, AND MOLLIE’S (1991) MODEL

Consider a spatial process {Y; : 7 =1,...,n} on a lattice D. Without loss of generality, assume that

the large scale variation has been captured by an overall level y. A popular formulation given by
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Besag et al. (1991) is:
1/; = K + ¢’L + )

2 bij b o2
¢Z|¢]¢z ~ N(Ezj;é b].,J7z ¢b")’ (1)

i Vi i O

gi ~ N(0,02),

where ¢; is a random effect to capture the small-scale variation in region ¢ attributable to regional

clustering, ¢; represents unstructured noise, b;;’s are known weights with b;; = and 035 and o? are

iy
variance parameters. It is the conditionally specified ¢;’s, which follow a Gaussian Markov random
field that make model (1) a spatial model. A common choice for weight b;; is 1 if site ¢ and site
j are immediate neighbors and 0 otherwise. This choice will be used in the sequel. Note that the
specification of the ¢;’s leaves the overall mean level of the GMRF unspecified. It can be shown that
only the pairwise differences between neighboring sites are specified (Besag and Kooperberg 1995). The
GMRF in model (1) therefore corresponds to an improper prior joint distribution of {¢1, ..., ¢, }; see
more discussion in Section 3. The heterogeneity effects €;’s are independent and identically distributed
normal variables. This model separates the variability of the observations into local clustering and
global heterogeneity, which can both be of scientific interest. The two-component error decomposition
can be used in more general settings, such as generalized linear models and survival models, finding
applications in a variety of fields including economics, epidemiology, and social science, among others.

Successful as model (1) has been, it provides only limited accommodation to spatial heteroskedas-
ticity, which may arise jointly with spatial autocorrelation in many spatial settings. Similar to a spatial
process, spatial heteroskedasticity itself may exhibit local clustering. That is, sites with high volatility
tend to have neighbors with high volatilities and those with low volatility tend to have neighbors with
low volatilities. Heteroskedasticity clustering occurs naturally when there are measurement errors. If
a variable is hard to measure precisely in a region, then it may be more likely to be hard to measure in
the surrounding regions. For example, the difficulty level of measuring snow water equivalent (Cowles
et al. 2002) may cluster according to the geographical contiguity. Model (1) implicitly specifies con-
ditional heteroskedasticity through the spatial clustering effects ¢;. It postulates that the conditional

variance of ¢; given ¢;4; depends inversely on the number of its neighbors. However, there is no
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spatially varying structure explicitly imposed on the marginal variance of ¢;. The spatial heterogene-
ity effects €;’s are assumed to have constant volatility (CV), which cannot reflect the local clustering
effect of heteroskedasticity for many environmental datasets with clustered volatility of measurement
errors.

Ideas of heteroskedasticity modeling in time series are to be adapted to the spatial analog. There are
two classes of heteroskedasticity models in time series: autoregressive conditional heteroskedasticity
(ARCH) and stochastic volatility (SV); see survey articles, for example, by Bollerslev, Engle, and
Nelson (1994) for ARCH and Ghysels, Harvey, and Renault (1996) for SV. In an ARCH model, the
conditional variance is modeled as a deterministic function of the available information; while in an SV
model, the conditional variance is modeled as a latent stochastic process. These modeling strategies
may be applied to the ¢;’s in model (1). In a spatial ARCH (SARCH) model, one would like to assume
the conditional distribution of ; given €;; to be normal with mean zero and variance a function of ;.
However, the existence of the joint distribution of {¢;} determined by these assumed full conditional
distributions is unknown. On the other hand, in an spatial stochastic volatility model, one ends up
with a hierarchical model which has been extensively studied in the Bayesian paradigm. Assume
there is a latent volatility process {02} which has local clustering. Given this volatility process, the
conditional distribution of ; is independent N(0,07), i =1,...,n. When the SSV model for the ¢;’s
is introduced into model (1), one more layer of the hierarchical structure is formed from the ?’s; see

details of the revised model in Section 3.

3.  SPATIAL STOCHASTIC VOLATILITY
We start by modifying the traditional model (1). Let Y = {Y;} denote the vector of observed
responses, ¢ = {@;} the vector of spatial clustering random effects, and € = {¢;} the vector of the
unstructured heterogeneity (often measurement errors). Conditioning on ¢, Y follows a multivariate

normal distribution N(u+ ¢, 02I). To allow spatially varying heteroskedasticity, we introduce a latent



variance process o2 = {0?}, and use it to replace the constant conditional variance o2 of Y. That is,
Yy, ¢,0% ~ N(u+ ¢, diaga?).

To impose a spatially smooth structure on o2, we let o = exp(up + h;), where py, is an overall level
of the log volatility, and h = {h;} follows another CAR model in the same way as ¢.

We now present the model with spatial stochastic volatility:

Yi = p+oi+es,

2 jsi bij O o5
¢Z‘¢]7§z ~ N( Eﬁé ;“]’Z ¢b'~)’

G Vil g1 O

gi ~ N(0,exp(un + h;))

2 jziCiihi o}
hilhsss ~ N (% i
’L‘ JFi E]‘;éicij ,Ej;éicij ’

where the ¢;;’s are pre-specified weights playing the same role for h as the b;;’s do for ¢ in model (1),
o2 is the variance parameter for h, and all other parameters have the same meaning as in model (1).
To make the parameters p and i, identifiable, we add the constraints Y " ; ¢; =0 and ) ", h; =0,
respectively. The weights {c;;} can be different from {b;;} in general, but in practice, we can choose
them to be the same. Model (2) distinguishes itself from model (1) by putting a smoothly-changing
spatial structure on the variance of the g;’s. When o} approaches zero, the variation in h vanishes,
and model (2) reduces to the constant volatility model (1). The process {¢;} in (2) can be used as an
error process alone even without the presence of spatial clustering effects ¢; see Table 2 in Section 5.

In a generalized linear models setup, we can replace the first equation in (2) with

N o= kAt ot e (3)

where 7); is the linear predictor with n; = g{ E(Y;)} for link function g. However, we limit the scope in
this paper to the case of normal responses.

The incorporation of a latent spatial process h in the log volatility has the same flavor as the
spatially varying coefficient processes in the literature. For point referenced data, Gelfand et al.

(2003) viewed the regression coefficients as realizations from latent spatial processes, and applied



their method to explain housing prices. Assuncao (2003) dealt with the counterpart for areal data.
These methods offer great flexibility in regression for spatial data, providing maps of spatially varying
regression coefficients that researchers like to see. However, they do not address the clustering of
volatilities, which can be important for many applications.

The SSV process has a variety of characteristics that make it attractive for spatial applications.
In the case of volatility clustering, researchers may want to detect “hot spots” of volatilities, and
monitor these spots more closely in the future. This can be done naturally by the SSV model. When
prediction is of interest, the SSV model may be preferred to CV models by allowing the variance to
vary spatially. SSV can also be an approximation of a more complex model and can pick up the effects
of omitted variables. The existence of SSV would be interpreted as evidence of misspecification, either

by omitted variables or through structural change.

4.  BAYESTIAN IMPLEMENTATION

Model (2) can be straightforwardly implemented in a Bayesian framework using MCMC methods. Let
0 = (u, 05), ph,02)T. Let p(-) in general represent the density of its arguments. The joint posterior

distribution of interest in given by

p(0, ¢, hly) o< L, @, i, h; y)p(|o)p(hlon)p(1)p(ol)p(in)p(oh), (4)

where the first term L on the right-hand side is the likelihood, and the remaining terms are prior
distributions. Marginal posteriors of interest can be obtained from (4) by integrating out any unwanted
parameters. For the normal case,
n n n 2
L(p, @, pn, h;y) ZZ_;exp {—% ;(uh + hz)} exp {—% ; %} ) (5)
It can be shown (e.g. Hodges, Carlin, and Fan 2003) that the improper joint distributions p(¢|o7) and
p(hloy) are

(6)

R N2
p(l02) o 03V exp {_ZM (;; 6) } |
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and

(7)

respectively, where 7 ~ j if 7 and j are neighboring sites. Note that the exponents are n — 1 instead of

p(h|o}) oc o, "V exp {—

> ing (hi — hj)z}

2
20},

n, as rigorously shown by Hodges et al. (2003). Prior specification of # completes the Bayesian setup.
For y and py, a flat (improper uniform) prior can be used. For variance parameters 0(21) and o2, a vague
but proper prior is chosen. Let IG(a,b) denote an inverse gamma distribution with mean b/(a — 1).
Choosing IG(ag,bs) and IG(an,bs) as priors for o3 and o has the advantage of being conjugate in
terms of their full conditionals.

MCMC algorithms for drawing samples from posterior distribution of the parameters in the CV
model (1) have become standard and are available in the widely used software WinBUGS (Spiegelhalter
et al. 1995), Therefore, here we only examine whether there is any extra difficulty brought by the SSV
in model (2). Reparameterize u, and h as A = {up + h;}. Once we have A, up and h can be obtained

by applying the constraint Y. h; = 0. The full conditional of \; is

p(Nil A=, 1, @, 0i217 y) o< p(Ail A, oi)p(yim, bi M), (8)
where A _; denotes the vector A with ); excluded. The first term p(\;|A_;, 03) is simply the density of
N(Af,v7), where A\f =37, ; A\j/m; and v} = o} /m; with m; being the number of neighbors of site i.

The second term can be bounded up to a scaling constant (Kim, Shephard, and Chib 1998, p.365),

oy — h:)2
(Y|, d5, i) o exp [_%)\i - w eXP(—/\i)]
(yi — U ¢i)2

< exp |~ = BTLZ A o) a.4 ) — dexp00)]

The term on the right-hand side of (8) can then be shown to be bounded by the density of
* v *
N (Ai + 5[(% —pu— ¢;)? exp(=A;) — 1], yf) . 9)

An accept-rejection algorithm can then be used to sample A; from its full conditional (e.g. Robert and

Casella 1999,p.49). Furthermore, the density in (8) is a log-concave density, as

o2 1 (yi—p—¢)
on, logp()‘ip‘fia,uﬂ ¢,0-f2u y) = _ﬁ B f

2

exp(—2A;) < 0. (10)
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Therefore, a more efficient adaptive rejection sampling (ARS) method can be used (Robert and Casella
1999, section 2.3.3). This is within the capability of WinBUGS, which means that the SSV model is
easily accessible by scientists with little programming efforts.

It would be interesting to compare the fit of the constant volatility model (1) and the SSV model
(2). A convenient model choice criterion is the Deviance Information Criterion (DIC) (Spiegelhalter
et al. 2002) defined as

DIC =D + pp,

where D is the posterior expectation of the deviance, and pp is the effective number of parameters.
The first term represents the fit of the model, and the second term measure the complexity of the
model. The effective number of parameters pp is obtained as the difference between the posterior
expected deviance and the deviance evaluated at the posterior expectations. This number is typically
smaller than the actual total number of parameters with random effects included, since the random
effects have dependence structure. The DIC is particularly useful in comparing models with a large
number of random effects. Lower DIC implies preferred model. It has been applied in both spatial
frailty models (Banerjee, Wall, and Carlin 2003) and stochastic volatility models in time series (Berg,
Meyer, and Yu 2004). Therefore, we adopt the DIC as an informal model comparison tool in the data

analysis in Section 5.

5. WHEAT YIELD DATA REVISITED

Peculiar trends in this data have been documented in the literature (Cressie 1993, p.250), probably
due to an earlier ridge and furrow pattern of plowing on the field. Neither a linear trend nor a periodic
component was found flexible enough to capture the large-scale variation in the data. The median-
polish algorithm is a robust way to decompose the trend into an overall effect, row effects, and column
effects. It has attractive outlier-resistance properties and may yield less-biased residuals than the
mean based method. Cressie (1993) remarked that the spatial trend, or large scale variation, must

be taken into account before parameters of the small scale variation can be interpreted. To focus on
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the modeling of spatial heteroskedasticity, the data used in this paper is the median-polish residuals
(Cressie 1993, Section 3.5) with spatial trend removed. The median-polish surface of the data can be
found on page 252 of Cressie (1993). The detrended residuals y;, shown in Figure 1, are the starting

point of our analysis.

[Figure 1 about here.]

5.1 Constant Volatility Model

The first model we fit is the widely used CV model (1) of Besag et al. (1991). The parameters of

2

2}. A non-informative flat prior is chosen for p. The prior distribution of the

interest are {u, ¢, 03,0
parameters for the variance parameters are: o3 ~ IG(1,1), and 07 ~ IG(1,1). We also tried using
1G(0.1,0.1) for o and o7, as suggested by Best et al. (1999), and got similar results.

We ran 500,000 MCMC samples, discarded the first 100,000, and recorded every 100th of the
remaining samples, resulting in 4,000 samples for summarizing. Table 1 gives the 2.5, 50, and 97.5
posterior percentiles for the parameters i, o4, and o.. Since we started with the detrended residuals,
our focus here is 04, and o.. Although these quantities give a rough idea about the decomposition

of the variation in y;’s, they are not directly comparable, since one is for the conditional specification

and the other is for the usual marginal specification (Banerjee, Carlin, and Gelfand 2004,p.164).
[Table 1 about here.]

The surface of the posterior medians of ¢;’s, ¢;’s, and £?’s, denoted by qgi’s, g;’s, and £2’s, respec-
tively, are plotted in Figure 1. The surface of q;i’s is smooth. Though it is hard to observe any pattern
in the plot of &;’s, the plot of £2’s does show some pattern of clustering. That is, high (low) of values
€2 tend to have high (low) values in the surrounding vicinity, potentially contradicting the constant
volatility assumption on &;’s.

Based on 10,000 random permutations, the observed Moran and the Geary statistics have P-values

0.9983 and 0.9974 for the &; process, and 0.0142 and 0.0134 for the £2 process, respectively. These
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tests suggest no evidence of clustering in €;’s, but strong evidence of clustering in £2’s. This motivates

us to fit a stochastic volatility model (2).

5.2 Spatial Stochastic Volatility

Model (2) is now fitted, with the hope to better describe the data. Non-informative flat priors are

chosen for p and pp. The prior distributions of the variance parameters 03) and o2 are both IG(1,1).
The same number of MCMC samples are collected for parameters in the SSV model. The 2.5, 50,

and 97.5 posterior percentiles for the parameters are also presented in Table 1. The fitted surface of

spatial clustering effects QASi’s and the latent standard deviation d;]s are plotted in Figure 2.
[Figure 2 about here.|

Compared to the spatial clustering effect in the CV model, the ¢;’s surface in the SSV model is
similar, except that it is less smooth. This is consistent with the slight increase in o, from 0.36 in
the constant volatility model to 0.40 in the stochastic volatility model. The essential utility of the
SSV model is seen from the surface of 6;’s, which closely resembles the surface shape of the £ in
Figure 1, picking up the spatial clustering in volatility. Clearly from Figure 2, the volatility in the
north-east corner is much lower than that in the center and the north-west corner of the field. We can
summarize the spatially varying standard deviation o;’s from the MCMC samples. They have mean
0.1852 and median 0.1769, compared to 0.236 in the CV model. Their range is from 0.1032 to 0.4814,
thus differing by a factor of 4.8.

It is also worth noting from Figure 1 and Figure 2 that the clustering patterns of the spatial effects
#;’s and the stochastic volatility o?’s are generally different. A high value in ¢; does not necessarily
imply high volatility, since its neighbor may also have high values of ¢;. It is possible that high
volatility appears at positions with ¢;’s low in magnitude. Actually, a closer investigation of the the
center of the field, where the volatility is the highest, reveals that wheat yield residuals in this area
are not high in magnitude but are very different from one plot to another, implying high volatility.

The variation in the g;’s is lower in the SSV model than in the CV model. On the other hand, the
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variation of the ¢;’s is higher in the SSV model than in the CV model, leading to a rougher surface
of spatial clustering effects. The signal parts of the two models, u + ¢;, are plotted against each
other in Figure 3 together with the 45 degree line. The signal in the SSV model mostly has a greater
magnitude than that in the CV model, which means that they are closer to the data. Figure 3 also
plots the estimated spatial heterogeneity effect ¢; and its variance 62 in the SSV model. The SSV

model provides larger variance for larger errors.
[Figure 3 about here.]

Table 2 compares the CV and SSV models in terms of the DIC and effective number of parameters
pp- It is worth noting that the deviances are computed only up to an additive constant. Therefore
the DIC can be negative and can only be compared across models under the same distributional
assumption. As seen in Figure 3 (b), most sites have relatively low volatilities except for those
clustered “hot spots”. Putting a structure on the volatility via SSV improves the fit significantly. The
CV model is soundly beaten by the SSV model in terms of their DIC values. Both models have pp
much smaller than their nominal parameter counts, which would include 500 and 1000 random effects
in the CV and SSV models, respectively. The difference of pp between the CV model and the SSV
model is only about 46, compared to the nominal difference of 500.

To illustrate that the spatial volatility process €; can be used alone in a model without the spatial

clustering effects ¢;, we also fit a model of the form
Yi=p+e, (11)

denoted as SVO in Table 2, where the ¢;’s are the same as those in the SSV model (2). This model
ignores the spatial clustering in the mean, and does not fit the data as well as the CV model (1) from

the DIC comparison.

[Table 2 about here.|
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6. DISCUSSION

In this paper we have introduced a SSV component into the widely used model of Besag et al. (1991).
The SSV component allows the regional heterogeneity effects to have variance clustering spatially.
The model is applied to the well-known wheat yield data and compared with the traditional constant
volatility model. Volatility clustering is found to be present in the data. The SSV model is easy to
implement and can be useful in a wide range of spatial applications, particularly when the volatility
of measurement errors clusters.

Several directions of extending the SSV model are immediate. We demonstrated the SSV model
assuming that the large scale variation has been removed. With the overall level y in model (2)
replaced by a linear predictor x; 3, the algorithm in Section 4 can be easily adapted to include the
unknown parameter vector § in the constructed linear structure. Although we focused on a lattice
setup, the essentials of the SSV can be carried over to irregularly spaced data, in which case, weight
matrices must be appropriately chosen, similar to what Pettitt, Weir, and Hart (2002) did for a CAR
model. The SSV can also be used as a random effect which replaces the commonly used homoskedastic
term in a model for non-normal data, for example, count data for disease mapping as Haran, Hodges,
and Carlin (2003) did in a generalized linear model setting.

The other class of models for volatility in time series, the ARCH model, is promising to provide
an alternative way for volatility clustering. Bera and Simlai (2003) got the specification of a spatial
ARCH model as the byproduct of an information matrix (IM) test. The error term is a replacement
for the i.i.d. error in a Simultaneous Autoregressive (SAR) model, which does not have much overlap

with the general hierarchical model (1).

REFERENCES

”

Assuncao, R. (2003), “Space varying coefficient models for small area data,” Environmetrics, 14,

453-473.

Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2004), Hierarchical modeling and analysis for spatial

14



data, Chapman & Hall / CRC.

Banerjee, S., Wall, M. M., and Carlin, B. P. (2003), “Frailty Modeling for Spatially Correlated Survival

Data, with Application to Infant Mortality in Minnesota,” Biostatistics (Ozford), 4, 123-142.

Bera, A. K. and Simlai, P. (2003), “Testing for spatial dependence and a formulation of spatial
ARCH (SARCH) model with applications,” Thirteenth Annual Meeting of the Midwest Econometrics

Group.

Berg, A., Meyer, R., and Yu, J. (2004), “Deviance Information Criterion for Comparing Stochastic

Volatility Models,” Journal of Business €& Economic Statistics, 22, 107—120.

Besag, J. (1974), “Spatial interaction and the statistical analysis of lattice systems (with discussion),”

Journal of the Royal Statistical Society, Series B, Methodological, 36, 192-236.

— (1977), “Errors-in-variables Estimation for Gaussian Lattice Schemes,” Journal of the Royal Sta-

tistical Society, Series B: Methodological, 39, 73—78.

Besag, J. and Kooperberg, C. (1995), “On conditional and intrinsic autoregressions,” Biometrika, 82,

733-746.

Besag, J., York, J., and Mollié, A. (1991), “Bayesian image restoration, with two applications in

spatial statistics (Disc: p21-59),” Annals of the Institute of Statistical Mathematics, 43, 1-20.

Best, N. G., Arnold, R. A., Thomas, A., Waller, L. A., and Conlon, E. M. (1999), “Bayesian Models
for Spatially Correlated Disease and Exposure Data,” in Bayesian Statistics 6 — Proceedings of the
Sizth Valencia International Meeting, eds. Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith,

A., Clarendon Press [Oxford University Press|, pp. 131-156.

Bollerslev, T., Engle, R., and Nelson, D. (1994), “ARCH models,” in The Handbook of Econometrics,

eds. Engle, R. and McFadden, D., Amsterdam: North-Holland, pp. 2959-3038.

15



Cowles, M. K. and Zimmerman, D. L. (2003), “A Bayesian space-time analysis of acid depo-
sition data combined from two monitoring networks,” Journal of Geophysical Research, 108,

d0i:10.1029,/2003JD004001.

Cowles, M. K., Zimmerman, D. L., Christ, A., and McGinnis, D. L. (2002), “Combining snow water
equivalent data from multiple sources to estimate spatio-temporal trends and compare measurement

systems,” Journal of Agricultural, Biological, and Environmental Statistics, 7, 536-557.
Cressie, N. A. C. (1993), Statistics for spatial data, John Wiley & Sons.

Dreesman, J. M. and Tutz, G. (2001), “Non-stationary Conditional Models for Spatial Data Based on

Varying Coeflicients,” Journal of the Royal Statistical Society, Series D: The Statistician, 50, 1-15.

Gelfand, A. E., Kim, H.-J., Sirmans, C. F., and Banerjee, S. (2003), “Spatial Modeling with Spatially

Varying Coefficient Processes,” Journal of the American Statistical Association, 98, 387-396.

Ghysels, E., Harvey, A., and Renault, E. (1996), “Stochastic volatility,” in Statistical Methods in

Finance, eds. C.R., R. and G.S., M., Amsterdam: North-Holland, pp. 119-191.

Haran, M., Hodges, J. S., and Carlin, B. P. (2003), “Accelerating computation in Markov Random
Fields Models for Spatial Data via Structured MCMC,” Journal of Computational and Graphical

Statistics, 12, 249-264.

Hodges, J. S., Carlin, B. P., and Fan, Q. (2003), “On the precision of the conditional autoregressive

prior in spatial models,” Biometrics, 59, 317-322.

Kelegian, H. H. and Robinson, D. P. (1998), “A suggested test for spatial autocorrelation and/or
heteroskedasticity and corresponding Monte Carlo results,” Regional Science and Urban Economics,

28, 389-417.

Kim, S., Shephard, N., and Chib, S. (1998), “Stochastic Volatility: Likelihood Inference and Compar-

ison with ARCH Models,” Review of Economic Studies, 65, 361-393.

16



Mercer, W. B. and Hall, A. D. (1911), “The experimental error of field trials,” Journal of Agricultural

Science (Cambridge), 4, 107-132.

Pettitt, A. N., Weir, I. S., and Hart, A. G. (2002), “A conditional autoregressive Gaussian process
for irregularly spaced multivariate data with application to modelling large sets of binary data,”

Statistics and Computing, 12, 353-367.
Robert, C. P. and Casella, G. (1999), Monte Carlo Statistical Methods, Springer-Verlag Inc.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002), “Reply to comments on
“Bayesian measures of model complexity and fit” (Pkg: p583-639),” Journal of the Royal Statistical

Society, Series B, Methodological, 64, 633—639.

Spiegelhalter, D. J., Thomas, A., Best, N. G., and Gilks, W. R. (1995), “BUGS: Bayesian inference
using Gibbs sampling, Version 0.50,” Technical report, Medical Research Council Biostatistics Unit,

Institute of Public Health, Cambridge University.

Whittle, P. (1954), “On Statitionary process in the plane,” Biometrika, 41, 434-449.

17



SSE S
AR\ SN
SO N
SRR

‘\V"

A\ >
SN

1.0 \ /A\» \ 'f“?«g?'? K
0 NN AN
0 OO\ Wil v X\
. \‘&‘f&\foy‘{@\‘«é&ﬁ\v,é\(l[[
RPN
A e
15/€a‘5\

S

(a) wheat yield residual y;'s from median—polish

1.0 SN,
‘(A\' ‘\‘A‘,,‘—"Y' "' A\ virg 0. Q\
0. W\ /“V)‘AV“: ) V“‘\ ("iﬁ&\ Y s
0.0 A RS N D 0.4 NS B8
NO A oV P vaw A A\
2 AR TR NSRS A AN AATSX
L\ CRIOMANSENY| %5 RS IRCX
> SSRVRGF 2 %, OGS s
’

VA
% \}’I XN/
AV

(c) poseterior median of residual &'s

(d) squared residual siz

Figure 1: Three-dimensional perspective of the wheat yield data and results from the constant volatil-
ity model of Besag, York, and Mollié (1991), y; = pu + ¢; + &;: (a) Wheat yield residual from Median-
(c) Spatial heterogeneity effects ¢;’s;

Polish; (b) Posterior median of the spatial clustering effects ¢;’s
(d) Squared spatial heterogeneity effects £2.
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Figure 2: Three-dimensional perspective of results from the stochastic volatility model: (a) Poste-
rior medians of the spatial clustering effects ¢;’s; (b) Estimated stochastic volatility, computed from
posterior medians of uj, and h;’s.
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Figure 3: Diagnostic plot of the SSV model: (a) Comparison of the estimated spatial heterogeneity
effects €;’s from CV and SSV, the solid line being the 45 degree line; (b) The estimated spatial
heterogeneity effect ¢; and its variance 67 in the SSV model.
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Table 1: Posterior percentiles for parameters in CV and SSV Models.
Parameter Constant Volatility Model Stochastic Volatility Model

25%  50% 97.5% 2.5% 50% 97.5%

7 —0.024 0.000 0.024 —0.021  0.000 0.021
oy 0.302 0.363 0.428  0.296  0.395 0.490
o, 0.236 0.267 0.298

m —4.782 —3.328  —2.695
on 0.463  1.190 2.394

Table 2: DIC and effective number of parameters pp for CV and SSV models.
Model PD DIC
SSV - 239.1 -51.3

CvV 1927 264.3
SVO 42.9  382.5
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